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Abstract. O n  the basis of the universal cohesive energy model of Rose, Smith, Guinea and 
Ferrante it is shown that the temperature effects can be scaled so that the functional form of 
the pressure equation at finite temperatures is isomorphic to that of the cohesive pressure. 
Using the equation of state thus obtained, we calculate Hugoniot curves for some solids and 
compare the results with experimental data. 

1. Introduction 

Recently Vinet et a1 [ 1-31 have proposed a universal equation of state (EOS) for various 
classes of solids at finite temperatures. This equation has been used successfully to 
describe the various isotherms up to high pressures (when there are no changes in phase 
or electronic configurations). The universal form independent of bonding character has 
been understood [ l ,  41 based on the nearly universal nature of ab initio calculated 
cohesive energy curves of metals [5,6] and the closed-shell overlapping interactions 
[7,8] dominant in a highly compressed state of solids. The cogency to use the universal 
EOS at an arbitrary temperature (without changing the functional form) has been sup- 
ported empirically by thoroughgoing analysis [ 1 , 21 of the experimental pressure-volume 
data of various solids in a temperature range below room temperature. It has also been 
demonstrated without theoretical grounds [9] that most isotherms of solids can be fitted 
to the temperature-dependent Murnaghan equation provided that the volume is rescaled 
to the equilibrium volume at the temperature under consideration. On the theoretical 
side, such scaling properties of temperature effects in the EOS problem have been 
examined [lo] using a generic member of the Birch-type isothermal equations. No 
justification has been given, however, of the universal EOS obtained from the well 
founded cohesive energy model of Rose, Smith, Guinea and Ferrante (RSGF) [6]. 

In this work we shall first formulate a rescaling method to support the validity of 
extending the universal EOS to arbitrary temperatures while keeping its functional form 
identical with the cohesive pressure by rescaling the volume. Here, the isothermal bulk 
modulus and its pressure derivatives are necessarily redefined at that temperature. Next 
we shall restate this isomorphically rescaled temperature-dependent universal EOS in a 
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convenient form at a reference temperature and use the equation to evaluate the 
Hugoniot curves of some solids. 

2. Rescaling method 

We use the following model of RSGF cohesive energy at 0 K: 

This leads to the zero-temperature EOS 

P,(x,  0 )  = 3B,(0)(1 - x ) H [ x ;  a(0)]  exp[-s(0)]/x2 
x 

H [ x ; a ( O ) ]  = 1 - c. [(I + l)a,+1(0) - a/(0)]s'-'(o) 
1 = 2  

where a2(0)  is set to zero, x = [V/Vo(0)]"3 is the linear compression, the subscript zero 
stands for the zero-pressure condition and the zero in the arguments denotes the zero 
temperature. Here s(0) = q(O)(x - 1) and q is a dimensionless parameter relating the 
equilibrium isothermal bulk modulus Bo to the equilibrium cohesive energy Uo.  All al(0) 
can be connected with the successive pressure derivatives of isothermal bulk modulus 
at equilibrium. RSGF have shown [6] that equation (2) with a3(0)  = 0.05 and neglecting 
higher-order terms can predict accurately the low-temperature isotherm data of various 
metals up to high prn Lssures. 

We may write the pressure at volume Vand temperature T ,  to a good approximation, 
as the sum of cohesive pressure Pc(x,  0) and thermal contributions P*(x ,  T ) :  

P(V, T )  = P c ( x ,  0) + P y x ,  T )  (3) 
where P*(x ,  T )  is zero at 0 K and assumed infinitely differentiable with respect to x. 
Now we restate equation (3) in the form 

P( V ,  T )  = 3Bo (O)A(x, T )  exp[ --s(0)]/x2 

A(x, 7') = (1 - x) H [ x ;  a(0)l + x 2 P * ( x ,  T )  exp[s(0)]/3Bo(0). 

(4) 

( 5 )  
Let V,( T )  be the equilibrium volume at a finite temperature T; then obviously xo( T )  = 
[Vo(T)/Vo(0)]1/3 is a non-negative zero of equation ( 5 )  for fixed T.  We expand A(x, T )  
around the new equilibrium point x = xo( T )  and substitute the expression into equation 
(4). Then the terms can be rearranged so that 

P(V, T )  = 3B,(T)(1 - z ) H [ z ;  a ( T ) ]  exp[-s(T)]/z2 

= Pc(z ,  T )  

after a little algebraic manipulation [ 111. Here z = [ V/Vo( T)] ' I3  is the linear compression 
rescaled at T .  Thus the cohesive energy Uc(x ,  0) in equation (1) also should be understood 
in the sense that Uc(x, 0) = Uc(z ,  T ) ~ T = o .  

Here the temperature-dependent parameters are defined by 

B o ( T )  = -B0(O)A( ' )  exp[-s(0)]/xo(T) 

B ; ( T )  = 1 + 2q(T) [1  + 3a3(T)]/3 
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Figure 1. Temperature dependence of the iso- Figure 2. Temperature dependence of the iso- 
thermal bulk modulus of copper at thermal bulk modulus of solid xenon at equilib- 
equilibrium: -, calculated results of the rium: - , calculated results of the present 
present model; A ,  ultrasonic data [14]; O, ultra- model; a), ultrasonic measurements [18]; A ,  P- 
sonic data [15]. V-T measurements [16]; *, Brillouin scattering 

data [19]. 

V ( T )  = V ( O ) X O ( T )  
a l + l ( T )  = [ a l ( T )  - A(/)/I!~'-'(O)A(')]/(l + 1) 

for 1 2 2 where a2( T )  = 0, the prime indicates the pressure derivative, and the superscript 
( I )  stands for the Ith differentiation with respect to x at fixed T where x = xo( T ) .  

As we hoped, we observe in equations (2) and (6) that the zero- and finite-tem- 
perature EOSS are represented by the same functional form. If all a,( T )  (1 2 2)  are set to 
zero, equation (6) simply reduces to the universal EOS [1] proposed by Vinet et al. These 
results justify theoretically to some extent the applications of the universal EOS over a 
rather wide range of temperatures. It is expected that the series function H [ z ;  a(T)] 
should converge rapidly, since the universal EOS has already described the energetics of 
metals well, and the higher-order terms ins( T )  should give rise to only small corrections 
for materials without significant internal degree of freedom. 

For practical purposes, we terminate the series in equation (6) at I = 3 by setting 
ai( T )  = 0 for all 12 4 and we present the calculated behaviour of the equilibrium 
isothermal bulk modulus (equation (7)) for several solids. Thermal pressure con- 
tributions will be referred to in the following section. Figures 1 and 2 present, respect- 
ively, the results for copper and xenon. For copper the values Bo = 1332 kbar and 
Bb = 5.615 were taken from ultrasonic experimental data [12] and other input par- 
ameters were from [13]. Our calculated results agree well with available ultrasonic data 
[14,15] over the investigated temperature range. In the case of xenon all the input 
parameters were taken from [ 161 except Bo and B(, . We used the values Bo = 36.26 kbar 
and Bb = 7.66 [17] fitted to the 4 K isotherm [16] using the Birch-Murnaghan EOS. 
Figure 2 shows good agreement between the calculated results, ultrasonic data [18], 
P-V-T measurements [ 171 and Brillouin scattering experiments [ 191. 

3. Shock Hugoniot curves 

Since we have shown that the temperature-dependent universal EOS has an identical 
functional form with the cohesive pressure equation, we can rewrite the pressure at V 
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Figure 3. Hugoniot pressure and 298 K isotherm 
for vanadium: -, calculated results; 0, exper- 
imental data [26]; @, experimental data [24]; A ,  
experimental data [E]. 
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Figure 4. Hugoniot pressure and 295 K isotherm 
forsodiumch1oride:-,---, calculated results; 
0, experimental data [28]; A, experimental data 
[29]; @, experimental data [24]. 

and Tin the following expression rescaled at reference temperature To: 

P(V, T )  = P,(y,  To) + AP* (9) 
wherey = [V/Vo(To)]1/3 and AP* = P*(y, T )  - P*(y, To).  By making use of equation 
(9) and the definitions of the free energy and internal energy, we are immediately led to 

E(V,  T )  =E, ,  + AUc + AE* + 3Vo(To)To y2 dy (10) 
To 

where Eo is the internal energy at the reference equilibrium state, AU, = 
Uc(y ,  To)  - U c ( l ,  To) ,  AE* = E * ( y ,  T )  - E * ( y ,  To) ,  and E* is the thermal energy 
corresponding to P*.  Equations (9) and (10) help us to avoid the absurd situation of 
calculating Vo( T )  well above the zero-pressure melting temperature of solids in 
Hugoniot calculations. On the Hugoniot path the pressure and energy are interrelated 
through the energy conservation equation across the shock front: 

where the subscript zero refers to the undisturbed solid in equilibrium at To and zero 
pressure. 

To complete the EOS, we need a definite thermal model. For the thermal free energy, 
we consider only the sum of the harmonic lattice vibrations approximated by the Debye 
thermal free energy (see, e.g. ,  [7]) and the electronic excitations F,* = -BpOy3/* T' ,  as 
proposed in [20]. Here bo is the constant to be determined by the electronic specific heat 
at y = 1. The harmonic Gruneisen function is taken as y o y 3  for simplicity [21,22] where 
yo is the thermodynamic Gruneisen parameter at y = 1. For the determination of q ( T o ) ,  
we use the information on the heat of sublimation at To. 

Using equations (9)-(11) and the truncated three-parameter EOS with the thermal 
model mentioned above, we calculated the Hugoniot curves of some solids. The input 
parameters except Boand Bb were taken from [13] forvanadium, gold andmolybdenum, 
and from [23] for sodium chloride (single crystal). 

The calculated Hugoniot pressure curve for vanadium plotted in figure 3 shows good 
agreement with shock experimental data [24,25] up to 3Mbar.  Here we used the 

E(V,  T )  = Eo + %V,(TO)(l - y3)P(V, T )  (11) 
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Figure 5. Hugoniot pressure for gold: -, cal- Figure 6.  Hugoniot pressure for molyb- 
culated results; 0, experimental data [24]; A ,  denum: -, calculated results; 0, experi- 
experimental data [32 ] .  mental data, [24]. 

ultrasonic values Bo = 1556 kbar and Bh = 4.27 referred to in [26]. The inset in the 
figure represents the 298 K isotherm with the measured data of [26]. The results for 
sodiumchloride are depictedinfigure4. Thevalues Bo = 233.9 kbar and B(,  = 5.35 from 
ultrasonic measurements [27] were used in the calculation. It is shown that our EOS 
model can predict both the isotherm [28,29] and the Hugoniot [24] data for NaCl up to 
300 kbar. Figure 4 shows, however, a deviation of the predicted Hugoniot curve (broken 
curve) from the experimental data above about 300 kbar where a phase change occurs 

InthecaseofgoldweobtainedthevaluesB, = 1667 kbarand Bh = 5.6, alternatively, 
from the fit of the experimental 298 K isotherm data in [31] to the truncated temperature- 
dependent universal EOS. We can see in figure 5 that the predicted Hugoniot curve agrees 
well with the shock data [24,32] up to about 5 Mbar. We also evaluated the shock 
Hugoniot curves for molybdenum and depict the results in figure 6. The values used are 
Bo = 2670 kbarand Bh = 4.1 which have beenobtainedfrom the fit ofthe293 Kisotherm 
data in [21]. Good agreement between the predicted curve and experiments [24] is 
found. 

~301. 

4. Conclusion 

We have developed a simple method for scaling the temperature effects in the EOS based 
on the universal cohesive energy model of RSGF so that the finite-temperature pressure 
equation has an identical functional form with the cohesive pressure. Thus it partly 
justifies the use of the universal EOS as it stands over a wide range of temperature as 
proposed by Vinet et al. In fact, temperature effects can be scaled in any analytic pressure 
equation near the equilibrium point through the rescaling procedures that we used. 

To illustrate the utility of the equations that we introduced, we have calculated the 
Hugoniot curves of some solids on the basis of truncated three-parameter EOS and 
selected thermal model. All the predicted curves are in excellent agreement with the 
respective experimental shock data as well as isotherms up to high pressures where no 
phase transition occurs. 
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